Non-integer Expansion Embedding for Prediction-Based Reversible Watermarking

نویسندگان

  • Shangyi Liu
  • Shijun Xiang
چکیده

This paper aims at reducing the embedding distortion by improving predictor’s performance for prediction-error expansion (PE) based reversible watermarking. In the existing PE embedding methods, the predicted values or their variety should be rounded to integer values. This will restrict predictor’s performance since the prediction context is only with past pixels (image) or samples (audio). In this paper, we propose a non-integer PE (NIPE) embedding approach, which can proceed non-integer prediction errors for data embedding by only expanding integer element of a prediction error while keeping its fractional element unchanged. More importantly, the NIPE scheme allows the predictor to estimate the current pixel/sample not restricted only past pixels/samples. We also propose a novel noncausal prediction strategy by combining past and future pixels/samples as the context. Experimental results for some standard test clips show that the non-integer output of predictor provides higher prediction performance, and the proposed NIPE scheme with the new predicting strategy can reduce the embedding distortion for the same payload.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-integer expansion embedding techniques for reversible image watermarking

This work aims at reducing the embedding distortion of prediction-error expansion (PE)-based reversible watermarking. In the classical PE embedding method proposed by Thodi and Rodriguez, the predicted value is rounded to integer number for integer prediction-error expansion (IPE) embedding. The rounding operation makes a constraint on a predictor’s performance. In this paper, we propose a non-...

متن کامل

A Prediction-Based Reversible Watermarking for MRI Images

Reversible watermarking is a special branch of image watermarking, that is able to recover the original image after extracting the watermark from the image. In this paper, an adaptive prediction-based reversible watermarking scheme is presented, in order to increase the payload capacity of MRI medical images. The scheme divides the image into two parts, Region of Interest (ROI) and Region of No...

متن کامل

Reversible Watermarking for Low Distortion Using Transform

Reversible watermarking enables the embedding of useful information in a host signal without any loss of host information. Tian’s difference-expansion technique is a high-capacity, reversible method for data embedding. However, the method suffers from undesirable distortion at low embedding capacities and lack of capacity control due to the need for embedding a location map. The propose a low d...

متن کامل

Efficient Pairwise Reversible Data Hiding Technique Using in Image Authentication

I. INTRODUCTION Image Authentication is used to evidence that image is really what the user deems it is. For example, during image watermarking of patient's diagnostic image may occur errors in diagnosis and treatment, which may direction to possible life-blusterous outcome. Thus, to take over the problem of happening of artefacts and to making zero distorted or noise free watermarked medical i...

متن کامل

Very High Embedding Capacity Algorithm for Reversible Image Watermarking

Reversible image watermarking enables the embedding of copyright or useful information in a host image without any loss of information. Here a novel technique to improve the embedding capacity i.e. reversible watermarking using an adaptive prediction error expansion & pixel selection is proposed. This work is an improvement in conventional Prediction Error Expansion by adding two new techniques...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012